Connect with us

Hi, what are you looking for?

Tech

Carbon dioxide was found in the atmosphere of an exoplanet by the James Webb Space Telescope

Carbon dioxide was found in the atmosphere of an exoplanet by the James Webb Space Telescope

The James Webb Space Telescope has opened a new era in exoplanet research after it clearly detected carbon dioxide in the atmosphere of an exoplanet for the first time. The gas giant orbiting a sun-like star is located 700 light-years away, and the results tell us about the formation and origin of the planet. Measurement report study The temper nature Accepted for publication in a scientific journal. The article proves that in the future the Webb Space Telescope may also be able to detect and measure the amount of carbon dioxide in the thin atmosphere of small rocky planets.

WASP-39 b, a hot gas giant, is about a quarter of Jupiter’s mass (about the mass of Saturn) and 1.3 times that of Jupiter. Extreme bloating is partly caused by high temperature (about 900°C). In contrast to the cooler and more compact gas giant in our solar system, WASP-39 b orbits close to its star (about one-eighth of the distance from Mercury to the Sun), which makes it roughly the same. It takes 4 days off the ground. The planet was discovered by ground-based telescopes in 2011, when it passed in front of its star and caused a slight decrease in its light (planetary transits).

The brightness changes of the WASP-39 star system at three different wavelengths (marked in different colours) can be seen in measurements from the James Webb Space Telescope (NIRSpec) near-infrared spectrometer. (Source: NASA, ESA, CSA, L. Hustak (STScI); Scientific Processing: JWST Transiting Exoplanet Society Early Release Science Team)

Measurements by other telescopes, such as the Hubble Space Telescope or the Spitzer Space Telescope, have already revealed the presence of water vapor, sodium and potassium in the atmosphere of WASP-39 b. Thanks to the unique infrared sensitivity of the Webb Space Telescope, the presence of carbon dioxide has now been confirmed. Covering exoplanets similar to WASP-39 b, whose orbits are not seen from above, but as close to the edge as we see them from us, provides a unique opportunity to observe the planets’ atmospheres. During occultation, the planet covers part of the light of the central star, and part of it passes through the atmosphere of an exoplanet (transmission).

WASP-39 b spectrum, based on measurements from the Webb Space Telescope’s NIRSpec spectrometer, with the first apparent detection of carbon dioxide in the atmosphere of an exoplanet. (Illustration: NASA, ESA, CSA, and L. Hustak (STScI); Scientific Work: JWST Transiting Exoplanet Society Early Release Science Team)

Since different gases absorb light at different wavelengths, the composition of a planet’s atmosphere can be determined by analyzing small differences in the brightness of light passing through the atmosphere. With its amplified atmosphere and frequent mantles, WASP-39 b is an ideal target for such spectroscopic measurements.

For research, NIRSpec is sensitive to Webb’s near-infrared (near infrared spectrometer) A spectrophotometer was used. The spectrum of the resulting exoplanet shows a smaller peak between 4.1 and 4.6 microns, which is the first clear evidence of carbon dioxide in the atmosphere of an exoplanet. So far, no observatory has been able to measure the transmission spectrum of an exoplanet with such detail in the range between 3 and 5.5 microns. This region of the spectrum is especially important in determining the frequency of water, methane, and carbon dioxide.

By understanding the composition of the planet’s atmosphere, we can learn more about the origin and evolution of the planet. Carbon dioxide is a sensitive tracker of planetary history, by measuring the amount of solids and the amount of gaseous substances from which the giant gases were formed. In the next decade, the James Webb Space Telescope will examine a large number of planets in detail, so it will also become clear how special the planets of our solar system are.

NIRSpec data is Early Release Program Announced within its framework, its purpose is to quickly analyze measurement data and develop various open source tools to process it. This enables new discoveries to be contributed from around the world, ensuring the best possible scientific results from observations for decades to come.

See also  The first ads have arrived in Windows 11: and this is how you can stop them

source: NASA JPL
Cover image: Illustration of the gas giant WASP-39 b (Source: NASA, ESA, CSA, Joseph Olmsted (STScI))

Suspension

Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

You May Also Like

Top News

In a harrowing incident that has shaken the community of Lewiston, Maine, a series of shootings on Wednesday evening resulted in a tragic loss...

Top News

President Joe Biden’s abrupt departure from a speech on the U.S. economy at the White House on Monday sent a ripple of speculation and...

Top News

Given the differences in styles with next-generation consoles, the so-called “console war” between Sony and Microsoft is arguably moot. Most console players, however, will...

World

Chinese scientists have discovered a little-known type of ore containing a rare earth metal highly sought after for its superconducting properties. The ore, called...

Copyright © 2024 Campus Lately.